Clinical
Clinical Articles
Clinical research and studies
Sort by date:
Donor's age dependent proliferation decrease of human bone marrow mesenchymal stem cells is linked to diminished clonogenicity
While mesenchymal stem cells represent an interesting cell source for regenerative medicine, several points have to be investigated to improve their use in clinical, and in particular in the elderly population. This work studied the proliferation capacity of mesenchymal stem cells isolated from human bone marrow in function of donor's age. Doubling time after in vitro culture, clonogenicity and phenotype were analyzed in 17 samples ranging from 3 to 85 years old (mean 47 ± 27). Results showed an increase in the doubling time for cell coming from old donor compared to cells coming from young ones. This was accompanied by a decrease in clonogenicity while no changes were observe in cell phenotype. In conclusion, this study showed an effect of donor's age on the proliferation capacity of mesenchymal stem cells isolated from bone marrow that was correlated to a decrease in clonogenicity. The comprehension of molecular mechanism involved in this process could help to improve the clinical application of mesenchymal stem cells.
Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: A meta-analysis
To assess the clinical efficacy and safety of mesenchymal stem cell (MSC) treatment for osteoarthritis of the knee (KOA), a systematic electronic literature search was performed on PubMed, EMBASE and Web of Science. Studies published in English from the earliest record to December 2014 were searched using the following keywords: Cartilage defect, cartilage repair, osteoarthritis, KOA, stem cells, MSCs, bone marrow concentrate (BMC), adipose-derived mesenchymal stem cells, synovial-derived mesenchymal stem cells and peripheral blood-derived mesenchymal stem cells. The effect sizes of selected studies were determined by extracting pain scores from the visual analog scale and functional changes from International Knee Documentation Committee and Lysholm and Western Ontario and McMaster Universities Osteoarthritis Index before and after MSCs or reference treatments at 3, 6, 12, and 24 months. The factors were analyzed and the outcomes were modified after comparing the MSC group pooled values with the pretreatment baseline or between different treatment arms. A systematic search identified 18 clinical trials on this topic, including 10 single-arm prospective studies, four quasi-experimental studies and four randomized controlled trials that used BMCs to treat 565 patients with KOA in total.
__MSC treatment in patients with KOA showed continual efficacy for 24 months compared with their pretreatment condition.__
Effectiveness of MSCs was improved at 12 and 24 months post-treatment, compared with at 3 and 6 months. No dose-responsive association in the MSCs numbers was demonstrated. However, patients with arthroscopic debridement, activation agent or lower degrees of Kellgren-Lawrence grade achieved improved outcomes. MSC application ameliorated the overall outcomes of patients with KOA, including pain relief and functional improvement from basal evaluations, particularly at 12 and 24 months after follow-up.
Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease
Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.
Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial)
AIMS: Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe ischaemic heart failure.
__METHODS AND RESULTS__
The MSC-HF trial is a randomized, double-blind, placebo-controlled trial. Patients were randomized 2 : 1 to intra-myocardial injections of MSC or placebo, respectively. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured by magnetic resonance imaging or computed tomography at 6 months follow-up. Sixty patients aged 30-80 years with severe ischaemic heart failure, New York Heart Association (NYHA) classes II-III, left ventricular ejection fraction (LVEF) <45% and no further treatment options were randomized. Fifty-five patients completed the 6-month follow-up (37 MSCs vs. 18 placebo). At 6 months, LVESV was reduced in the MSC group: -7.6 (95% CI -11.8 to -3.4) mL (P = 0.001), and increased in the placebo group: 5.4 (95% CI -0.4 to 11.2) mL (P = 0.07). The difference between groups was 13.0 (95% CI 5.9-20.1) mL (P = 0.001). Compared with placebo, there were also significant improvements in LVEF of 6.2% (P<0.0001), stroke volume of 18.4 mL (P < 0.0001), and myocardial mass of 5.7 g (P = 0.001). No differences were found in NYHA class, 6-min walking test and Kansas City cardiomyopathy questionnaire. No side effects were identified.
__CONCLUSION__
Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure.
Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells
Human bone marrow-derived mesenchymal cells contain mesenchymal stem cells (MSCs), which are well known for their osteo/chondrogenic potential and can be used for bone reconstruction. This article reports the viability of cryopreserved human mesenchymal cells and a comparison of the osteogenic potential between noncryopreserved and cryopreserved human mesenchymal cells with MSC-like characteristics, derived from the bone marrow of 28 subjects. The viability of cryopreserved mesenchymal cells was approximately 90% regardless of the storage term (0.3 to 37 months). It is clear by fluorescence-activated cell sorter analysis that the cell surface antigens of both noncryopreserved and cryopreserved mesenchymal cells were negative for hematopoietic cell markers such as CD14, CD34, CD45, and HLA-DR but positive for mesenchymal characteristics such as CD29 and CD105. To monitor the osteogenic potential of the cells, such as alkaline phosphatase (ALP) activity and in vitro mineralization, a subculture was conducted in the presence of dexamethasone, ascorbic acid, and glycerophosphate. No difference in osteogenic potential was found between cells with or without cryopreservation treatment. In addition, cells undergoing long-term cryopreservation (about 3 years) maintained high osteogenic potential. In conclusion, cryopreserved as well as noncryopreserved human mesenchymal cells could be applied for bone regeneration in orthopedics.