HomeArticlesClinicalEffect on lifespan of high yield non-myeloablating transplantation of bone marrow from young to old mice.
ClinicalTissue renewal

Effect on lifespan of high yield non-myeloablating transplantation of bone marrow from young to old mice.

Source:Front Genet
Published:2013

Summary

Tissue renewal is a well-known phenomenon by which old and dying-off cells of various tissues of the body are replaced by progeny of local or circulating stem cells (SCs). An interesting question is whether donor SCs are capable to prolong the lifespan of an aging organism by tissue renewal. In this work, we investigated the possible use of bone marrow (BM) SC for lifespan extension. To this purpose, chimeric C57BL/6 mice were created by transplanting BM from young 1.5-month-old donors to 21.5-month-old recipients. Transplantation was carried out by means of a recently developed method which allowed to transplant without myeloablation up to 1.5 × 10(8) cells, that is, about 25% of the total BM cells of the mouse. As a result, the mean survival time, counting from the age of 21.5 months, the start of the experiment, was +3.6 and +5.0 (±0.1) months for the control and experimental groups, respectively, corresponding to a 39 ± 4% increase in the experimental group over the control. In earlier studies on BM transplantation, a considerably smaller quantity of donor cells (5 × 10(6)) was used, about 1% of the total own BM cells. The recipients before transplantation were exposed to a lethal (for control animals) X-ray dose which eliminated the possibility of studying the lifespan extension by this method.

Access Original Research

View the complete study and detailed methodology from the original source.

Read Full Study →

Related Articles

Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial

OBJECTIVE To assess in multiple sclerosis (MS) the effect of intense immunosuppression followed by autologous hematopoietic stem cells transplantation (AHSCT) vs mitoxantrone (MTX) on disease activity measured by MRI. METHODS We conducted a multicenter, phase II, randomized trial including patients with secondary progressive or relapsing-remitting MS, with a documented increase in the last year on the Expanded Disability Status Scale, in spite of conventional therapy, and presence of one or more gadolinium-enhancing (Gd+) areas. Patients were randomized to receive intense immunosuppression (mobilization with cyclophosphamide and filgrastim, conditioning with carmustine, cytosine-arabinoside, etoposide, melphalan, and anti-thymocyte globulin) followed by AHSCT or MTX 20 mg every month for 6 months. The primary endpoint was the cumulative number of new T2 lesions in the 4 years following randomization. Secondary endpoints were the cumulative number of Gd+ lesions, relapse rate, and disability progression. Safety and tolerability were also assessed. Twenty-one patients were randomized and 17 had postbaseline evaluable MRI scans. RESULTS AHSCT reduced by 79% the number of new T2 lesions as compared to MTX (rate ratio 0.21, p = 0.00016). It also reduced Gd+ lesions as well as the annualized relapse rate. No difference was found in the progression of disability. CONCLUSION Intense immunosuppression followed by AHSCT is significantly superior to MTX in reducing MRI activity in severe cases of MS. These results strongly support further phase III studies with primary clinical endpoints.

Neurology2015
Read More

Effect of aging on stem cells

As we age, stem cells lose efficacy and ability to heal

NIH2017
Read More

Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease

Intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) successfully improved cognitive function and prevented neurodegeneration in two different Alzheimer's disease mouse models.

PubMed2015
Read More