Long-term cryopreservation of bone marrow for autologous transplantation
Summary
Little is known about the effect of long-term cryopreservation on the viability of hematopoietic stem cells (HSC) or on the success of autologous bone marrow transplantation. Although progenitor cell assays such as culture of CFU-GM after thawing can be predictive of engraftment, the most rigorous assay for the cryosurvival of HSC is engraftment after reinfusion of stem cells. We retrospectively evaluated the engraftment data for 36 patients with hematologic malignancies or solid tumors treated at the Fred Hutchinson Cancer Research Center between 1981 and 1993 who received bone marrows stored for 2 years or more. The median duration of cryopreservation for this study group was 2.7 years (range 2.0-7.8). Ninety-seven percent of patients in the study group achieved a granulocyte count of > or = 0.5 x 1.0(9)/1 at a median of 19 days (range 10-115) vs 86% of control group (selected by diagnosis and date of storage) at a median of 20 days (P = 0.14). Seventy percent of patients in the study group achieved a platelet count > or = 20 x 10(9)/1 at a median of 27 days (range 9-69) vs 74% of control group at a median of 23 days (P = 0.47). Also, samples of 28 marrows cryopreserved for a median of 4.4 years (range 2.0-7.8) were cultured to determine if a loss of hematopoietic progenitors relative to duration of storage could be detected. The storage length was not predictive for the quantity of colonies formed (P = 0.57 for BFU-E-derived colonies; P = 0.65 for CFU-GM-derived colonies). We found no consistent detrimental effect of long-term cryopreservation on the success rate of autologous bone marrow transplantation. __Conclusion__ This report confirms previous reports that marrow cells cryopreserved for several years are capable of engrafting. Therefore, bone marrow cells may be stored at an early appropriate time before the side-effects of multiple cycles of chemotherapy and radiotherapy on hematopoietic tissues are incurred.
Access Original Research
View the complete study and detailed methodology from the original source.
Read Full Study →Related Articles
Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial
OBJECTIVE To assess in multiple sclerosis (MS) the effect of intense immunosuppression followed by autologous hematopoietic stem cells transplantation (AHSCT) vs mitoxantrone (MTX) on disease activity measured by MRI. METHODS We conducted a multicenter, phase II, randomized trial including patients with secondary progressive or relapsing-remitting MS, with a documented increase in the last year on the Expanded Disability Status Scale, in spite of conventional therapy, and presence of one or more gadolinium-enhancing (Gd+) areas. Patients were randomized to receive intense immunosuppression (mobilization with cyclophosphamide and filgrastim, conditioning with carmustine, cytosine-arabinoside, etoposide, melphalan, and anti-thymocyte globulin) followed by AHSCT or MTX 20 mg every month for 6 months. The primary endpoint was the cumulative number of new T2 lesions in the 4 years following randomization. Secondary endpoints were the cumulative number of Gd+ lesions, relapse rate, and disability progression. Safety and tolerability were also assessed. Twenty-one patients were randomized and 17 had postbaseline evaluable MRI scans. RESULTS AHSCT reduced by 79% the number of new T2 lesions as compared to MTX (rate ratio 0.21, p = 0.00016). It also reduced Gd+ lesions as well as the annualized relapse rate. No difference was found in the progression of disability. CONCLUSION Intense immunosuppression followed by AHSCT is significantly superior to MTX in reducing MRI activity in severe cases of MS. These results strongly support further phase III studies with primary clinical endpoints.
Effect of aging on stem cells
As we age, stem cells lose efficacy and ability to heal
Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease
Intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) successfully improved cognitive function and prevented neurodegeneration in two different Alzheimer's disease mouse models.